Domain adaptation aims to transfer the knowledge acquired by models trained on (data-rich) source domains to (low-resource) target domains, for which a popular method is invariant representation learning. While they have been studied extensively for classification and regression problems, how they apply to ranking problems, where the data and metrics have a list structure, is not well understood. Theoretically, we establish a domain adaptation generalization bound for ranking under listwise metrics such as MRR and NDCG. The bound suggests an adaptation method via learning list-level domain-invariant feature representations, whose benefits are empirically demonstrated by unsupervised domain adaptation experiments on real-world ranking tasks, including passage reranking. A key message is that for domain adaptation, the representations should be analyzed at the same level at which the metric is computed, as we show that learning invariant representations at the list level is most effective for adaptation on ranking problems.
translated by 谷歌翻译
我们提出了一种针对8位神经网络加速器的新型8位量化感知训练(S8BQAT)方案。我们的方法灵感来自Lloyd-Max压缩理论,其实际适应性适应训练期间可行的计算开销。通过量化质心源自32位基线,我们使用多区域绝对余弦(MRACOS)正规器增强训练损失,该培训将重量汇总到其最近的质心,有效地充当伪压缩机。此外,引入了定期调用的硬压缩机,以通过模拟运行时模型重量量化来提高收敛速率。我们将S8BQAT应用于语音识别任务,使用经常性神经网络TransDucer(RNN-T)体系结构。使用S8BQAT,我们能够将模型参数大小增加,以将单词错误率相对降低4-16%,同时仍将延迟提高5%。
translated by 谷歌翻译
我们提出了一种可扩展高效的神经波形编码系统,用于语音压缩。我们将语音编码问题作为一种自动汇总任务,其中卷积神经网络(CNN)在其前馈例程期间执行编码和解码作为神经波形编解码器(NWC)。所提出的NWC还将量化和熵编码定义为可培训模块,因此在优化过程期间处理编码伪像和比特率控制。通过将紧凑的模型组件引入NWC,如Gated Reseal Networks和深度可分离卷积,我们实现了效率。此外,所提出的模型具有可扩展的架构,跨模块残差学习(CMRL),以覆盖各种比特率。为此,我们采用残余编码概念来连接多个NWC自动汇总模块,其中每个NWC模块执行残差编码以恢复其上一模块已创建的任何重建损失。 CMRL也可以缩小以覆盖下比特率,因为它采用线性预测编码(LPC)模块作为其第一自动化器。混合设计通过将LPC的量化作为可分散的过程重新定义LPC和NWC集成,使系统培训端到端的方式。所提出的系统的解码器在低至中等比特率范围(12至20kbps)或高比特率(32kbps)中的两个NWC中的一个NWC(0.12百万个参数)。尽管解码复杂性尚不低于传统语音编解码器的复杂性,但是从其他神经语音编码器(例如基于WVENET的声码器)显着降低。对于宽带语音编码质量,我们的系统对AMR-WB的性能相当或卓越的性能,并在低和中等比特率下的速度试验话题上的表现。所提出的系统可以扩展到更高的比特率以实现近透明性能。
translated by 谷歌翻译
我们在这项工作中展示了内存密集型计算可能导致由于片上存储器访问和CPU-GPU上下文切换开销导致严重的性能问题,以及各种深度学习模型。对于此问题,当前立即(JIT)内核融合和代码生成技术具有局限性,例如粗融合计划探索策略和有限的代码生成能力。我们提出了FusionStecting,一个能够融合内存密集型运营商的深度学习编译器,具有各种数据依赖性和非同一性并行性,进入大型GPU内核,以减少全局内存访问和上下文切换开销。 FusionStecting通过引入中间值的数据重用来扩大融合可以超越先前JIT工作的操作组合范围。它探讨了大型融合空间,以便通过考虑内存访问成本,内核呼叫和资源使用约束来决定最佳融合计划。 FusionStecting通过有效地调整具有域特定成本模型的最佳拼接方案。实验结果表明,与现有技术相比,FusionStecting可以达到2.21倍的加速,平均为1.45倍。除了这些实验结果之外,我们还将我们的方法集成到编译器产品中,并将其部署到具有数千个GPU的AI工作负载的生产集群。该系统已运行超过4个月,平均节省了7,000 GPU小时,每月约有30,000个任务。
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译
When using LiDAR semantic segmentation models for safety-critical applications such as autonomous driving, it is essential to understand and improve their robustness with respect to a large range of LiDAR corruptions. In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions. To rigorously evaluate the robustness and generalizability of current approaches, we propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy. Then, we systematically investigate 11 LiDAR semantic segmentation models, especially spanning different input representations (e.g., point clouds, voxels, projected images, and etc.), network architectures and training schemes. Through this study, we obtain two insights: 1) We find out that the input representation plays a crucial role in robustness. Specifically, under specific corruptions, different representations perform variously. 2) Although state-of-the-art methods on LiDAR semantic segmentation achieve promising results on clean data, they are less robust when dealing with noisy data. Finally, based on the above observations, we design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications. It is promising that our benchmark, comprehensive analysis, and observations can boost future research in robust LiDAR semantic segmentation for safety-critical applications.
translated by 谷歌翻译
Decompilation aims to transform a low-level program language (LPL) (eg., binary file) into its functionally-equivalent high-level program language (HPL) (e.g., C/C++). It is a core technology in software security, especially in vulnerability discovery and malware analysis. In recent years, with the successful application of neural machine translation (NMT) models in natural language processing (NLP), researchers have tried to build neural decompilers by borrowing the idea of NMT. They formulate the decompilation process as a translation problem between LPL and HPL, aiming to reduce the human cost required to develop decompilation tools and improve their generalizability. However, state-of-the-art learning-based decompilers do not cope well with compiler-optimized binaries. Since real-world binaries are mostly compiler-optimized, decompilers that do not consider optimized binaries have limited practical significance. In this paper, we propose a novel learning-based approach named NeurDP, that targets compiler-optimized binaries. NeurDP uses a graph neural network (GNN) model to convert LPL to an intermediate representation (IR), which bridges the gap between source code and optimized binary. We also design an Optimized Translation Unit (OTU) to split functions into smaller code fragments for better translation performance. Evaluation results on datasets containing various types of statements show that NeurDP can decompile optimized binaries with 45.21% higher accuracy than state-of-the-art neural decompilation frameworks.
translated by 谷歌翻译